Sequential requirements

Does a neural network need domain knowledge? Stephen Downes shows how important this question is, so I’ll try my guess.

“if we require domain knowledge in order to learn, then we require memorization”

According to the traditional learning theories, we construct knowledge upon existing knowledge, for example by linking the new stuff into the known. When we see knowledge as representation, all the higher order concepts are nicely grown from lower level concepts. But at the very bottom there must be some special knowledge, sort of “seed” knowledge, to enable this recursive mechanism because otherweise we would run into an infinite regression.

Even if we use the less abstract idea of “recognition” we might misunderstand it and ask: how can we recognize what we do not already know? The trick is that recognition needs only a part of the features of a pattern to see the whole pattern.

The artificial neuronal networks described in the above post, apply such pattern recognition to learn solely from conversations. How far can this approach be extended? To the bottom, to eliminate the need for domain knowledge?

Let’s first look at human neuronal networks. The conversations begin long before the human can talk, when the baby has their first gaze “conversations” with their mother, at the age of just a few weeks. It is here that they recognize the world around them, long before they learn propositions about “he, she, it, they”, and even the “I” is learned only via the “thou” in these first bodily conversations.

(If it seems far-fetched to compare this kind of conversations with the sophisticated concepts of a given knowledge domain, consider how language covers a long scale of words: While it ends with isolated concepts coded in specialized, domain-specific terminology, it starts with basic ideas that suggest a very bodily context, and a full-senses/ all-at-once recognition, such as the deictic notions of “I”, “now”, and “here”, or other simple spatial or temporal descriptions which are gradually extended via synaesthetic metaphors, or with the modal words that extend from “wanting” to deontic use to epistemic use.)

Similarly, how do neuronal networks learn how to find out which response should be trusted? For the little human neuronetworks, the seed trust is given before they need to start reasoning, and it will enable them to add more trust criteria over time.

Artificial neuronal networks, by contrast, should always depend on some human who decides if their response is correct, or at least if their underlying algorithm is acceptable. So, there are limitations of what they can learn on their own. (This may be a consolation, but still it is unsettling how few humans might be controlling them.)

So, I think, while artificial networks need some prerequisite input, human neuronal networks use recognizing from the very beginning and require no indispensable prerequisites.

van-der-Waerden

This sheds different light on the idea of prerequisites, and it also makes the idea of a “course” much different from the traditional temporal sequential arrangement. If I encounter prerequisites later, there is still time to cover them (like a rhizome is not necessarily pulled out from the top to the root but often in the reverse direction), as long as the course does not build the stuff of later weeks upon the stuff of previous weeks but uses the weeks’ skeleton only as a schedule of when people can simultaneously discuss a certain topic (i.e., if it is organized as a cMOOC rather than an xMOOC), or even lets the community “be” the curriculum.

This is the first, obvious meaning of

“how education may be linear, but learning certainly isn’t.”

(which Doug Belshaw spends “five minutes explaining”). Recognition explains the deeper mechanism of learning as not linear/ sequential (not via fixed isolated representations) but as laminar/ all-at-once (multiple connected features of a pattern). Thanks so much Stephen Downes for the idea of recognition.

The image above shows the logical dependencies of the chapters of an important textbook of my study (B. L. v. d. Waerden, Algebra I, 8th ed., 1971) which I encountered again as an illustration of linearity in the first German book on Hypertext by R. Kuhlen, 1991.

This entry was posted in Knowledge. Bookmark the permalink.

2 Responses to Sequential requirements

  1. Thanks Matthias for the way you’ve framed this discussion.
    These notes should be considered questions for I know so little in any kind of depth.
    If the AI learning process is some sort of regression with back propagation, it is hard for me to see domain knowledge as functioning other than some sort of algorithm that might function like a theory. Belshaw notes the metaphoric nature of learning in your link. Isn’t reasoning also metaphoric at some level and how would neural networks reason if their backend is statistical? A backchannel article by Gary Markus claimed that alpha go is still a hybrid neural network with tree search (or GOFAI). Would not the addition of domain knowledge also represent a type of hybrid? If there is an emergent layer, that might be different. Is there something I’m missing?
    I also still feeling like AI should be considered brain inspired more than modeled. If neural networks are considered to function like brains but more efficiently, it entails a different approach; as opposed to considering AI to be a more powerful method of programming that extends human capabilities but does not replace them in a significant way; unless you discount much human capability. Thinking here about the way many industries have had to constrain human capabilities in order to fit humans into their system’s needs. Echoes of Audrey Water’s fear that Ed Tech wants to mold humans to fits the needs of their software, or as George Siemens phrased it, “Simply consume. Click and be knowledgeable.”

  2. x28 says:

    Thanks Howard for your thoughts and for the further pointers which I will follow. In particular, considering hybrids is a promising idea. I am glad about your visits.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s